Matching the Flowmeter to the Application
popular DP element.
Two significant specifications for a flowmeter are accuracy and turndown (or rangeability). The accuracy of all flowmeters depends to some degree on the circumstances of their application. These effects include pressure, temperature, fluid dynamic influences, and external influences. Pressure and temperature cause dimensional and physical changes. Fluid flow and pipe roughness can shift meter performance. Mass meters and displacement meters are the least affected, while turbine, vortex, and ultrasonic meters are the most affected. The upshot is that a traceable and complete calibration in a lab is no guarantee that the same performance and accuracies will be obtained or maintained in the field.
A flowmeter’s turndown is the ratio of the maximum to the minimum flowrate capable of being measured at a specified accuracy, providing a measure of rangeability. High values of turndown can be irrelevant because typical processing flow velocities often fall within relatively narrow ranges. For example, most practical liquid pipeline flowrates in the processing industries range from 0.5 to 12 ft/sec, a turndown ratio of 24-to-1. Lower rates are difficult to measure accurately and higher rates result in high pressure drops, pumping energy costs, and erosion (if solids are present). In the case of pipelines carrying gases in the processing industries, the practical flow velocities range from 15 to 200 ft/sec — a turndown ratio of about 13-to-1. Many actual applications have flowrate ranges well within these extremes.
Instrument engineers commonly apply volumetric flowmeters to measure liquids. When the process fluid is a gas or steam, measuring mass flow becomes especially important. Because these fluids are compressible, their density changes with pressure and temperature. Volumetric flow measurement is often meaningless in these cases. But volumetric flowmeters work if the application also includes measurement of temperatures and pressures at the meter or these values are known quantities. Simple calculations based on the three variables can infer mass flowrates.
Differential-Pressure Flowmeters
Flowmeters based on differential pressure insert an element within the piped flow. The unrecoverable pressure loss across the element — typically an orifice plate, Venturi, nozzle, pitot tube, or wedge — is a measure of the volumetric flowrate.
Flowmeters based on differential pressure represent a popular choice in the processing industries, constituting nearly 30 percent of the installations. They have good application flexibility since they can measure liquid, gas, and steam flows and are suitable for extreme temperatures and pressures with moderate pressure losses. Accuracy ranges from 1 percent to 5 percent. Compensation techniques can improve accuracy to 0.5 percent to 1.5 percent.
On the other hand, DP flowmeters are expensive to install and have limited rangeability (turndown) compared to other types. They require a separate transmitter to compute the volumetric flowrate and develop a standard signal. Changes in density, pressure, and viscosity can significantly affect accuracy of DP flowmeters. And while they have no moving parts, maintenance can be intensive.
Orifice plate: Instrument engineers can employ a variety of elements to create the differential pressure, with the orifice plate being the most common. Orifice plates are inexpensive and available in a variety of materials. The turndown ratio, however, is less than 5-to-1, and accuracy is moderate — 2 to 4 percent of full scale. Maintenance of good accuracy requires a sharp edge to the upstream side. This edge will wear and degrade over time. Pressure loss for orifice plates is high relative to other DP elements.
Venturi: This element finds use primarily in water and wastewater applications. It handles dirty fluids and does not require upstream flow profiling. Pressure loss is minimal, making it a good choice when little pressure head is available. Rangeability, while better than orifice plates, is less than 6-to-1, with accuracy of +/-1-to-2 percent of full scale. Viscosity effects on accuracy are high. Flow must be turbulent (Reynolds numbers > 10,000). The Venturi has limited acceptance within the processing industries.
Nozzle: Characteristics of nozzle elements mimic those of the Venturi. Nozzles come in three types: ISA 1932 nozzle (common outside of the United States); the long radius nozzle; and the Venturi nozzle.
Pitot tube: This element is another low-cost DP element used to measure fluid flow, especially air flow in ventilation and HVAC systems. Pitots commonly measure the speed of airplanes. This element works by converting the kinetic energy of the flow velocity into potential energy (pressure). Engineers can easily insert the pitot tube into existing piping, minimizing installation costs. It cannot handle dirty flow and has limited rangeability.
Like an insertion meter, the pitot tube makes a measurement at a point within the pipeline or ductwork. An exception is the annubar pitot tube, which contains multiple orifices. This element sees the dynamic pressure across the velocity profile, providing an averaging effect.
Wedge: This element consists of a V-shaped restriction molded into the meter body. In profile the wedge looks like a segmental orifice plate to the incoming fluid, but it’s more expensive than an orifice plate. This basic meter has been on the market for over 40 years, demonstrating its ability to handle tough, dirty fluids. The slanted faces of the wedge provide self-scouring action and minimize damage from impact with secondary phases. Rangeability of 8-to-1 is relatively high for a DP element and accuracies are possible to +/-0.5 percent of full scale.
The wedge flowmeter, however, is not approved for flow measurement by the American Gas Association (www.aga.org) or the American Petroleum Institute (www.api.org). Despite this, it’s a popular choice in oil and gas applications, especially in production fields. For difficult fluids it can be equipped with a pair of remote seals that effectively isolate the metered fluid from the DP transmitter without affecting accuracy.
Electromagnetic Flowmeters
Electromagnetic flowmeters (magmeters) are a popular choice among instrument engineers, making up about 20 percent of flowmeter installations. Faraday’s law says that a conductor moving through a magnetic field produces an electric signal. In this case the fluid is the conductor and electromagnetic coils surrounding the meter body generate the magnetic field.
Magmeters have no moving parts. They offer wide rangeability and an unobstructed flow path. Magmeters are ideal for slurries, and perform well with corrosive and erosive fluids. Engineers can pick a nonconductive liner material for the flow tube — Teflon, Tefzel, rubbers, ceramic, etc. — to suit the fluid measured. Magmeters require minimum lengths of straight pipe to condition the flow profile. On the downside, the fluid must be conductive, which rules out most petroleum-based flows. Magmeters also have physical pressure and temperature limits.
Magmeters have rangeability up to 1000-to-1, depending on the maximum tolerable measurement error. For flow velocities of 0.5 to 50 ft/sec, accuracies are usually stated as a percent of rate, for lower velocities, accuracies are stated as a percent of span. Typical velocities measured range from three to 15 ft/sec for water and clean chemicals, three to six ft/sec for abrasive fluids, and six to 12 ft/sec for coatings and liquids with entrained air.
The voltage developed across the electrodes is in the millivolt range and should be carried via shielded cable to a nearby converter. The converter near the flow tube boosts the signal to a standard (four to 20 mA) or frequency output (zero to 10,000 Hz) for transmission to a display or controller.
The coils producing the magnetic field may be excited by AC, DC, or pulsed DC. DC excitation accounts for most magmeter installations today. With AC excitation, line voltage powers the magnetic coils, and the resulting signal has a sine wave shape of line frequency whose amplitude is a linear function of flow velocity. AC designs produce a high coil current (typically 3.2 amp) and a good signal-to-noise ratio. They are relatively insensitive to media noise. However, they consume much power and can be plagued with zero drift caused by eddy current noise. To compensate, operators stop the flow and set the transmitter output to zero. Frequent operations to eliminate eddy current noise are sometimes necessary to maintain accuracy, which is about +/-1 percent of rate.
With DC excitation designs, a lower frequency DC pulse excites the magnetic coils. The converter reads both the flow and noise signals during a pulse. In between pulses, however, it sees only noise, permitting noise cancellation after each cycle. So zero drift is not a problem for pulsed-DC designs. These magmeters offer 0.15 percent to 0.5 percent accuracy and low power consumption. The low coil current (0.1 to 0.5 amp) comes with smaller signal and low signal-to-noise ratio. Low frequency designs have longer response times.
A newer DC design develops a stronger flow signal by increasing the DC coil excitation current (0.7 to five amp). This design improves the signal-to-noise ratio, but increases power consumption and cost. Flow tubes must generally be less than 20 inches in diameter. Another new design employs dual excitation, pulsing the coils at about seven Hz for zero stability and also at 70 Hz for a stronger signal and improved response times (0.1 sec). But this design raises costs and applies only to flow tubes smaller than 16 inches in diameter. Eddy current instability increases proportionally as sensor size increases.
Mass Flowmeters
Mass flowmeters directly measure mass flowrate, as compared to other flowmeter types, which measure flowrate based on volumetric principles. The two primary types of mass flowmeters, accounting for about 18 percent of installations, are Coriolis and thermal mass flowmeters.
Coriolis flowmeters represent the ideal flowmeter. They can be applied to virtually any fluid — liquids, gasses, and slurries. They are immune to changes in viscosity, pressure, temperature, or density of the piped fluid and are unaffected by flow profile disturbances. They offer high accuracy (+/-0.1 percent) and rangeability (100-to-1), and provide an additional measurement of fluid density. But their purchase and installation costs are relatively high, as well as their sensitivity to vibration. In addition, they come in a limited selection of sizes, rarely over two inches.
Positive-displacement flowmeters cannot handle solids, entrapped air in liquids, or entrained liquids in gases. They are expensive to install and maintain, having many moving parts. Pressure drop across the meters is high.
This is the fifth article in a five-part series on the history and operation of flowmeter technology.
Greg Livelli is a senior product manager for ABB Instrumentation, based in Warminster, Pa. He has more than 15 years experience in the design and marketing of flowmetering equipment. Mr. Livelli earned an MBA from Regis University and a bachelor’s degree in Mechanical Engineering from New Jersey Institute of Technology. Mr. Livelli can be reached at [email protected] or 215 674-6641.
www.abb.com