NIST Measures Viscosity on Microminiature Scale

Sept. 7, 2010

Researchers at the National Institute of Standards and Technology (NIST) have demonstrated a microminiaturized device that can make complex viscosity measurements — critical data for a wide variety of

Researchers at the National Institute of Standards and Technology (NIST) have demonstrated a microminiaturized device that can make complex viscosity measurements — critical data for a wide variety of fields dealing with things that have to flow — on sample sizes as small as a few nanoliters. Currently a table-top prototype, the NIST believes this rheometer could be a particularly valuable tool for biotechnologists studying minute quantities of complex materials that must function in confined spaces.Viscosity, elasticity and how materials flow when subject to a force is the subject of rheology, and the measurements tell a lot about a complicated material like a gel. Is it more like a liquid or a solid? By how much and under what conditions? The popular toy Silly Putty™ is a classic example of complex viscoelasticity, bouncing better than a rubber ball under a sharp, sudden force but slumping into a puddle when left alone.One common way to make dynamic rheology measurements (how behavior changes with the speed or frequency of the applied force) is with a sizeable lab instrument that traps a test sample between a fixed plate and one that moves, and measures how much the thin layer of test material resists being deformed. Typical sample sizes are around a couple of millilitersInspired by a talk by an NIST scientist working on the design of novel nano positioning microelectromechanical systems (MEMS), team leader Kalman Migler and his colleagues began a collaboration to build a MEMS device that duplicated a classic sliding-plate dynamic rheometer — but in a space about one-twentieth the size of a postage stamp. The sample size of the MEMS rheometer is about 5 nanoliters. The MEMS rheometer inherently tests materials when they are confined in a very small space. For many biological applications where the material is meant to be used in a confined region like a blood vessel or the interior of a cell — or must be injected through a thin needle — understanding the flow characteristics of small amounts in a small space is more important than knowing how it behaves in bulk.NIST”s early prototype MEMS rheometers include only the core sliding plate mechanism on the MEMS chip, and rely on a microscope and high-speed cameras for the actual measurements. In a more polished version, according to the research team, the necessary sensors could be included on the chip and the entire instrument reduced to a handheld device for, e.g., quality control measurements on a plant floor. The NIST MEMS dynamic rheometer is described in a new paper in the journal Lab on a Chip.** G.F. Christopher, J.M. Yoo, N. Dagalakis, S.D. Hudson and K.B. Migler. Development of aMEMS based dynamic rheometer. Lab Chip, 2010, Advance Article. DOI: 10.1039/C005065B.

Sponsored Recommendations

Learn About: Micro Motion™ 4700 Config I/O Coriolis Transmitter

An Advanced Transmitter that Expands Connectivity

Micro Motion™ G-Series Compact, Drainable Coriolis Flow and Density Meters

Micro Motion G-Series Coriolis flow and density meters are ideally suited for Process Monitoring and Optimization applications, offering easy selection with pre-selected models...

Learn about: Micro Motion G-Series Coriolis Flow and Density Meters

The Micro Motion G-Series is designed to help you access the benefits of Coriolis technology even when available space is limited.

Micro Motion 4700 Coriolis Configurable Inputs and Outputs Transmitter

The Micro Motion 4700 Coriolis Transmitter offers a compact C1D1 (Zone 1) housing. Bluetooth and Smart Meter Verification are available.